
Analiza datelor experimentale
Elementele principale de reţinut pentru analiza grafică a datelor experimentale sunt următoarele:

1. DATELE EXPERIMENTALE (xi, yi) obţinute din experiment, conţin:
variabila independentă "x" (se impune, de exemplu temperatura) şi 
variabila dependentă "y" (se măsoară, de exemplu rezistenţa electrică). 

2. PLOT. Se reprezită grafic datele experimentale. 
alege abscisa (axa x) =mărimea reprezentată, valoare minimă/maximă
alege ordonata (axa y) =mărimea reprezentată, valoare minimă/maximă
alege unitatea de măsură pentru axe 1cm (x) =10°C, 1mm (y)=1 Ohm

3. IPOTEZA => y = f(x)
"Funcţia f modelează (descrie) felul cum se modifică variabila dependentă y în funcţie de variabila 
independentă x."
Ai funcţia de fitare, ştii parametrii care trebuiesc determinaţi. 

4. FITAREA (potrivirea)
grafic este curba care trece cel mai aproape de punctele experimentale.
găsirea parametrilor din funcţia f(x) care minimizează suma pătratelor deviaţiilor (reziduurilor 
"ri=fi−yi" fi = f(xi)) "hi-pătrat" χ2=∑(fi −yi)2 
[metoda celor mai mici pătrate] Karl Frie. Gauss 1809, Adrien Marie Legendre 1805
[treaba asta o face un program soft, de exemplu ORIGIN, EXCEL]

5. CALITATEA FITĂRII, goodness of fit.
Reziduurile (yi−fi) ca funcţie de x, au o distribuţie aleatoare. Dacă nu, atunci funcţia propusă nu 
cuprinde tot comportamentul mărimii "y" şi trebuie modificată. 

Utilizarea concretă a metodei celor mai mici pătrate pentru funcţiea liniară e descris mai jos (opţional).
Fitarea cu o funcţie liniară a datelor experimentale (xi, yi):

y = f(x) = ax+b fi = axi+b [a şi b sunt necunoscutele]

Funcţia care trebuie minimizată:
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unde "N" este numărul de măsurători. Aici "a" şi "b" sunt necunoscutele, iar sumele sunt de fapt nişte 
simple numere.

Ca să fie un minim trebuie ca prima derivată (după "a" şi după "b") să se anuleze:
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Cele 2 condiţii duc la un sistem liniar de 2 ecuaţii cu 2 necunoscute:
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Soluţia sistemului este:
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sau mai simplu:
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EXEMPLU: a = −80.2 / 22.8 = −3.5175 b = −4.8 − (−3.5175)(3.2) = 6.456 din:

n=5 x y x–x. y–y. (x–x)2. (x–x)(y–y)

0 6 –3.2 10.8 10.24 –34.56

2 –1 –1.2 3.8 1.44 –4.56

3 –3 –0.2 1.8 0.04 –0.36

5 –10 1.8 –5.2 3.24 –9.36

6 –16 2.8 –11.2 7.84 –31.36

∑ 16 –24 0 0 22.8 –80.2

media 3.2 –4.8



Exemplu NIST=> Thermal Expansion of Copper Case Study
Aproximează coeficientul de dilatare printr-un raport de polinoame de gradul doi (pătratice)
Eroarea (graficul din mijloc sus) nu este aleatoare

Aproximează coeficientul de dilatare printr-un raport de polinoame de gradul trei (cubice)
Eroarea (graficul din mijloc sus) este aleatoare şi mult mai mică



Surse
"LEAST SQUARES FITTING OF EXPERIMENTAL DATA"
http://35.9.69.219/home/modules/pdf_modules/m359.pdf 
de la http://physnet2.pa.msu.edu/index.html 

Cum se lucrează foarte corect => Thermal Expansion of Copper Case Study 
http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd64.htm 

de la NIST, National Institute of Standards and Technology (USA)
Engineering Statistics Handbook
http://www.itl.nist.gov/div898/handbook/index.htm
NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/

Gallery of Quantitative Techniques from the Handbook
http://www.itl.nist.gov/div898/handbook/quantgal.htm 

DATAPLOT Summary [program de prelucrarea datelor]
http://www.itl.nist.gov/div898/software/dataplot/summary.htm 
program for performing scientific, engineering, statistical, mathematical, and graphical analysis.

Adăugate fiindcă merită atenţie (sunt doar în engleză!)
http://www.itl.nist.gov/div898/handbook/eda/section3/eda34.htm 
1.3.4. Graphical Techniques: By Problem Category

http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm 
1.3.3.15. Lag Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm 
1.3.3.21. Normal Probability Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#CDF 
1.3.6.2. Related Distributions

http://www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm 
1.3.6. Probability Distributions

http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm 
1.3.6.4. Location and Scale Parameters

http://www.itl.nist.gov/div898/handbook/eda/section3/6plot.htm
1.3.3.33. 6-Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda365.htm 
1.3.6.5. Estimating the Parameters of a Distribution

http://www.itl.nist.gov/div898/handbook/eda/eda.htm 
1. Exploratory Data Analysis

http://www.itl.nist.gov/div898/handbook/eda/eda.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda365.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/6plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda364.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm#CDF
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda34.htm
http://www.itl.nist.gov/div898/software/dataplot/summary.htm
http://www.itl.nist.gov/div898/handbook/quantgal.htm
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd64.htm
http://physnet2.pa.msu.edu/index.html
http://35.9.69.219/home/modules/pdf_modules/m359.pdf


1.3.3.1. Autocorrelation Plot
Purpose: Check Randomness 
Autocorrelation plots (Box and Jenkins, pp. 28-32) are a commonly-used tool for checking 
randomness in a data set. This randomness is ascertained by computing autocorrelations for data 
values at varying time lags. If random, such autocorrelations should be near zero for any and all time-
lag separations. If non-random, then one or more of the autocorrelations will be significantly non-zero. 

In addition, autocorrelation plots are used in the model identification stage for Box-Jenkins 
autoregressive, moving average time series models. 

Sample Plot: Autocorrelations should be near-zero for randomness. Such is not the case in this  
example and thus the randomness assumption fails 

This sample autocorrelation plot shows that the time series is not random, but rather has a high degree 
of autocorrelation between adjacent and near-adjacent observations. 

Definition: r(h) versus h 
Autocorrelation plots are formed by 

1. Vertical axis: Autocorrelation coefficient 

where Ch is the autocovariance function 

and C0 is the variance function 

Note--Rh is between -1 and +1. 
Note--Some sources may use the following formula for the autocovariance function 

Although this definition has less bias, the (1/N) formulation has some desirable statistical 
properties and is the form most commonly used in the statistics literature. See pages 20 and 49-50 
in Chatfield for details. 

2. Horizontal axis: Time lag h (h = 1, 2, 3, ...) 
3. The above line also contains several horizontal reference lines. The middle line is at zero. The 

other four lines are 95% and 99% confidence bands. Note that there are two distinct formulas for 
generating the confidence bands. 

http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.htm#Chatfield
http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.htm#Chatfield
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.htm#Box


1. If the autocorrelation plot is being used to test for randomness (i.e., there is no time dependence 
in the data), the following formula is recommended: 

where N is the sample size, z is the percent point function of the standard normal distribution and 
is the. significance level. In this case, the confidence bands have fixed width that depends on the 
sample size. This is the formula that was used to generate the confidence bands in the above plot. 

2. Autocorrelation plots are also used in the model identification stage for fitting ARIMA models. 
In this case, a moving average model is assumed for the data and the following confidence bands 
should be generated: 

where k is the lag, N is the sample size, z is the percent point function of the standard normal 
distribution and  is. the significance level. In this case, the confidence bands increase as the lag 
increases. 

Questions 
The autocorrelation plot can provide answers to the following questions: 

1. Are the data random? 

2. Is an observation related to an adjacent observation? 

3. Is an observation related to an observation twice-removed? (etc.) 

4. Is the observed time series white noise? 

5. Is the observed time series sinusoidal? 

6. Is the observed time series autoregressive? 

7. What is an appropriate model for the observed time series? 

8. Is the model 
Y = constant + error 
valid and sufficient? 

9. Is the formula valid? 

Importance: Ensure validity of engineering conclusions 
Randomness (along with fixed model, fixed variation, and fixed distribution) is one of the four 
assumptions that typically underlie all measurement processes. The randomness assumption is 
critically important for the following three reasons: 

1. Most standard statistical tests depend on randomness. The validity of the test conclusions is 
directly linked to the validity of the randomness assumption. 

2. Many commonly-used statistical formulae depend on the randomness assumption, the most 
common formula being the formula for determining the standard deviation of the sample mean: 

where  is the standard deviation of the data. Although heavily used, the results from using this 
formula are of no value unless the randomness assumption holds. 

3. For univariate data, the default model is 
Y = constant + error 

If the data are not random, this model is incorrect and invalid, and the estimates for the parameters 
(such as the constant) become nonsensical and invalid. 

In short, if the analyst does not check for randomness, then the validity of many of the statistical 
conclusions becomes suspect. The autocorrelation plot is an excellent way of checking for such 
randomness. 

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc446.htm


Examples 
Examples of the autocorrelation plot for several common situations are given in the following pages. 
1. Random (= White Noise)
2. Weak autocorrelation
3. Strong autocorrelation and autoregressive model 
4 Sinusoidal model

Related Techniques 
Partial Autocorrelation Plot 
Lag Plot 
Spectral Plot 
Seasonal Subseries Plot 
Case Study 
The autocorrelation plot is demonstrated in the beam deflection data case study. 

Software 
Autocorrelation plots are available in most general purpose statistical software programs including 
Dataplot.

Autocorrelation Plot: Random Data
Autocorrelation Plot The following is a sample autocorrelation plot. 

Conclusions We can make the following conclusions from this plot. 

1. There are no significant autocorrelations.
2. The data are random.

Discussion 
Note that with the exception of lag 0, which is always 1 by definition, almost all of the autocorrelations 
fall within the 95% confidence limits. In addition, there is no apparent pattern (such as the first twenty-
five being positive and the second twenty-five being negative). This is the abscence of a pattern we 
expect to see if the data are in fact random. 

A few lags slightly outside the 95% and 99% confidence limits do not neccessarily indicate non-
randomness. For a 95% confidence interval, we might expect about one out of twenty lags to be 
statistically significant due to random fluctuations. 

There is no associative ability to infer from a current value Yi as to what the next value Yi+1 will be. 
Such non-association is the essense of randomness. In short, adjacent observations do not "co-relate", 
so we call this the "no autocorrelation" case. 

http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#AUTOCOPL
http://www.itl.nist.gov/div898/handbook/eda/section4/eda425.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4431.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4463.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocop4.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocop3.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocop2.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocop1.htm


Moderate Autocorrelation
Autocorrelation Plot The following is a sample autocorrelation plot. 

Conclusions 
We can make the following conclusions from this plot. 

4. The data come from an underlying autoregressive model with moderate positive autocorrelation. 

Discussion 
The plot starts with a moderately high autocorrelation at lag 1 (approximately 0.75) that gradually 
decreases. The decreasing autocorrelation is generally linear, but with significant noise. Such a pattern 
is the autocorrelation plot signature of "moderate autocorrelation", which in turn provides moderate 
predictability if modeled properly.

Recommended Next Step 
The next step would be to estimate the parameters for the autoregressive model: 

Such estimation can be performed by using least squares linear regression or by fitting a Box-Jenkins 
autoregressive (AR) model. 

The randomness assumption for least squares fitting applies to the residuals of the model. That is, even 
though the original data exhibit randomness, the residuals after fitting Yi against Yi-1 should result in 
random residuals. Assessing whether or not the proposed model in fact sufficiently removed the 
randomness is discussed in detail in the Process Modeling chapter. 

The residual standard deviation for this autoregressive model will be much smaller than the residual 
standard deviation for the default model 

Strong Autocorrelation and Autoregressive Model
Autocorrelation Plot for Strong Autocorrelation The following is a sample autocorrelation plot. 

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm


Conclusions 
We can make the following conclusions from the above plot. 
The data come from an underlying autoregressive model with strong positive autocorrelation. 

Discussion 
The plot starts with a high autocorrelation at lag 1 (only slightly less than 1) that slowly declines. It 
continues decreasing until it becomes negative and starts showing an incresing negative 
autocorrelation. The decreasing autocorrelation is generally linear with little noise. Such a pattern is 
the autocorrelation plot signature of "strong autocorrelation", which in turn provides high predictability 
if modeled properly. 

Recommended Next Step 
The next step would be to estimate the parameters for the autoregressive model: 

Such estimation can be performed by using least squares linear regression or by fitting a Box-Jenkins 
autoregressive (AR) model. 

The randomness assumption for least squares fitting applies to the residuals of the model. That is, even 
though the original data exhibit randomness, the residuals after fitting Yi against Yi-1 should result in 
random residuals. Assessing whether or not the proposed model in fact sufficiently removed the 
randomness is discussed in detail in the Process Modeling chapter. 

The residual standard deviation for this autoregressive model will be much smaller than the residual 
standard deviation for the default model 

Autocorrelation Plot: Sinusoidal Model
Autocorrelation Plot for Sinusoidal Model The following is a sample autocorrelation plot. 

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm


Conclusions 
We can make the following conclusions from the above plot. 
The data come from an underlying sinusoidal model. 

Discussion 
The plot exhibits an alternating sequence of positive and negative spikes. These spikes are not 
decaying to zero. Such a pattern is the autocorrelation plot signature of a sinusoidal model. 

Recommended Next Step The beam deflection case study gives an example of modeling a sinusoidal 
model.

1.3.3.15. Lag Plot
Purpose: Check for randomness 
A lag plot checks whether a data set or time series is random or not. Random data should not exhibit 
any identifiable structure in the lag plot. Non-random structure in the lag plot indicates that the 
underlying data are not random. Several common patterns for lag plots are shown in the examples 
below. 

Sample Plot 

This sample lag plot exhibits a linear pattern. This shows that the data are strongly non-random and 
further suggests that an autoregressive model might be appropriate. 

http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm#examples
http://www.itl.nist.gov/div898/handbook/eda/section4/eda425.htm


Definition A lag is a fixed time displacement. For example, given a data set Y1, Y2 ..., Yn, Y2 and Y7 have 
lag 5 since 7 - 2 = 5. Lag plots can be generated for any arbitrary lag, although the most commonly 
used lag is 1. 

A plot of lag 1 is a plot of the values of Yi versus Yi-1 
Vertical axis: Yi for all i 
Horizontal axis: Yi-1 for all i 

Questions 
Lag plots can provide answers to the following questions: 

1. Are the data random? 
2. Is there serial correlation in the data? 
3. What is a suitable model for the data? 
4. Are there outliers in the data? 

Importance Inasmuch as randomness is an underlying assumption for most statistical estimation and 
testing techniques, the lag plot should be a routine tool for researchers. 
Examples 
Random (White Noise) 
Weak autocorrelation 
Strong autocorrelation and autoregressive model 
Sinusoidal model and outliers 

Related Techniques 
Autocorrelation Plot
Spectrum
Runs Test
Case Study 
The lag plot is demonstrated in the beam deflection data case study. 
Software 
Lag plots are not directly available in most general purpose statistical software programs. Since the lag 
plot is essentially a scatter plot with the 2 variables properly lagged, it should be feasible to write a 
macro for the lag plot in most statistical programs. Dataplot supports a lag plot.

1.=Lag Plot: Random Data
Lag Plot 

Conclusions 
We can make the following conclusions based on the above plot. 

1. The data are random. 
2. The data exhibit no autocorrelation. 

http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#LAGPLOT
http://www.itl.nist.gov/div898/handbook/eda/section4/eda425.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot4.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot3.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot2.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot1.htm


3. The data contain no outliers. 

Discussion 
The lag plot shown above is for lag = 1. Note the absence of structure. One cannot infer, from a current 
value Yi-1, the next value Yi. Thus for a known value Yi-1 on the horizontal axis (say, Yi-1 = +0.5), the Yi-
th value could be virtually anything (from Yi = -2.5 to Yi = +1.5). Such non-association is the essence 
of randomness.

2.=Lag Plot: Moderate Autocorrelation
Lag Plot 

Conclusions We can make the conclusions based on the above plot. 

1. The data are from an underlying autoregressive model with moderate positive autocorrelation 
2. The data contain no outliers. 

Discussion 
In the plot above for lag = 1, note how the points tend to cluster (albeit noisily) along the diagonal. 
Such clustering is the lag plot signature of moderate autocorrelation. 

If the process were completely random, knowledge of a current observation (say Yi-1 = 0) would yield 
virtually no knowledge about the next observation Yi. If the process has moderate autocorrelation, as 
above, and if Yi-1 = 0, then the range of possible values for Yi is seen to be restricted to a smaller range 
(.01 to +.01). This suggests prediction is possible using an autoregressive model. 

Recommended Next Step 
Estimate the parameters for the autoregressive model: 

Since Yi and Yi-1 are precisely the axes of the lag plot, such estimation is a linear regression straight 
from the lag plot. 

The residual standard deviation for the autoregressive model will be much smaller than the residual 
standard deviation for the default model 

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm


3.=Lag Plot: Strong Autocorrelation and Autoregressive Model
Lag Plot 

Conclusions We can make the following conclusions based on the above plot. 

1. The data come from an underlying autoregressive model with strong positive autocorrelation 
2. The data contain no outliers. 

Discussion 
Note the tight clustering of points along the diagonal. This is the lag plot signature of a process with 
strong positive autocorrelation. Such processes are highly non-random--there is strong association 
between an observation and a succeeding observation. In short, if you know Yi-1 you can make a strong 
guess as to what Yi will be. 

If the above process were completely random, the plot would have a shotgun pattern, and knowledge 
of a current observation (say Yi-1 = 3) would yield virtually no knowledge about the next observation Yi 

(it could here be anywhere from -2 to +8). On the other hand, if the process had strong autocorrelation, 
as seen above, and if Yi-1 = 3, then the range of possible values for Yi is seen to be restricted to a 
smaller range (2 to 4)--still wide, but an improvement nonetheless (relative to -2 to +8) in predictive 
power. 

Recommended Next Step 
When the lag plot shows a strongly autoregressive pattern and only successive observations appear to 
be correlated, the next steps are to: 

1. Extimate the parameters for the autoregressive model: 

Since Yi and Yi-1 are precisely the axes of the lag plot, such estimation is a linear regression straight 
from the lag plot. 

The residual standard deviation for this autoregressive model will be much smaller than the 
residual standard deviation for the default model 

2. Reexamine the system to arrive at an explanation for the strong autocorrelation. Is it due to the 
1. phenomenon under study; or 
2. drifting in the environment; or 
3. contamination from the data acquisition system? 

Sometimes the source of the problem is contamination and carry-over from the data acquisition system 
where the system does not have time to electronically recover before collecting the next data point. If 
this is the case, then consider slowing down the sampling rate to achieve randomness. 

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot1.htm


4.=Lag Plot: Sinusoidal Models and Outliers
Lag Plot 

Conclusions 
We can make the following conclusions based on the above plot. 

1. The data come from an underlying single-cycle sinusoidal model. 
2. The data contain three outliers. 

Discussion 
In the plot above for lag = 1, note the tight elliptical clustering of points. Processes with a single-cycle 
sinusoidal model will have such elliptical lag plots. 

Consequences of Ignoring Cyclical Pattern 
If one were to naively assume that the above process came from the null model 

and then estimate the constant by the sample mean, then the analysis would suffer because 

1. the sample mean would be biased and meaningless; 
2. the confidence limits would be meaningless and optimistically small. 

The proper model 

(where is the amplitude, is the frequency--between 0 and .5 cycles per observation--, and is the 
phase) can be fit by standard non-linear least squares, to estimate the coefficients and their 
uncertainties. 

The lag plot is also of value in outlier detection. Note in the above plot that there appears to be 4 points 
lying off the ellipse. However, in a lag plot, each point in the original data set Y shows up twice in the 
lag plot--once as Yi and once as Yi-1. Hence the outlier in the upper left at Yi = 300 is the same raw data 
value that appears on the far right at Yi-1 = 300. Thus (-500,300) and (300,200) are due to the same 
outlier, namely the 158th data point: 300. The correct value for this 158th point should be 
approximately -300 and so it appears that a sign got dropped in the data collection. The other two 
points lying off the ellipse, at roughly (100,100) and at (0,-50), are caused by two faulty data values: 
the third data point of -15 should be about +125 and the fourth data point of +141 should be about -50, 
respectively. Hence the 4 apparent lag plot outliers are traceable to 3 actual outliers in the original run 
sequence: at points 4 (-15), 5 (141) and 158 (300). In retrospect, only one of these (point 158 (= 300)) 
is an obvious outlier in the run sequence plot. 

Unexpected Value of EDA 
Frequently a technique (e.g., the lag plot) is constructed to check one aspect (e.g., randomness) which 
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it does well. Along the way, the technique also highlights some other anomaly of the data (namely, that 
there are 3 outliers). Such outlier identification and removal is extremely important for detecting 
irregularities in the data collection system, and also for arriving at a "purified" data set for modeling. 
The lag plot plays an important role in such outlier identification. 

Recommended Next Step 
When the lag plot indicates a sinusoidal model with possible outliers, the recommended next steps are: 

1. Do a spectral plot to obtain an initial estimate of the frequency of the underlying cycle. This will be 
helpful as a starting value for the subsequent non-linear fitting. 

2. Omit the outliers. 
3. Carry out a non-linear fit of the model to the 197 points. 



1.3.6. Probability Distributions
Probability Distributions 
Probability distributions are a fundamental concept in statistics. They are used both on a theoretical 
level and a practical level. 

Some practical uses of probability distributions are: 

1. To calculate confidence intervals for parameters and to calculate critical regions for hypothesis 
tests. 

2. For univariate data, it is often useful to determine a reasonable distributional model for the data. 
3. Statistical intervals and hypothesis tests are often based on specific distributional assumptions. 

Before computing an interval or test based on a distributional assumption, we need to verify that 
the assumption is justified for the given data set. In this case, the distribution does not need to be 
the best-fitting distribution for the data, but an adequate enough model so that the statistical 
technique yields valid conclusions. 

4. Simulation studies with random numbers generated from using a specific probability distribution 
are often needed. 

Table of Contents 
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1. What is a Probability Distribution
Discrete Distributions 
The mathematical definition of a discrete probability function, p(x), is a function that satisfies the 
following properties. 

1. The probability that x can take a specific value is p(x). That is 

2. p(x) is non-negative for all real x. 
3. The sum of p(x) over all possible values of x is 1, that is 

where j represents all possible values that x can have and pj is the probability at xj. 

One consequence of properties 2 and 3 is that 0 <= p(x) <= 1. 0≤p(x)≤1

What does this actually mean? A discrete probability function is a function that can take a discrete 
number of values (not necessarily finite). This is most often the non-negative integers or some subset 
of the non-negative integers. There is no mathematical restriction that discrete probability functions 
only be defined at integers, but in practice this is usually what makes sense. For example, if you toss a 
coin 6 times, you can get 2 heads or 3 heads but not 2 1/2 heads. Each of the discrete values has a 
certain probability of occurrence that is between zero and one. That is, a discrete function that allows 
negative values or values greater than one is not a probability function. The condition that the 
probabilities sum to one means that at least one of the values has to occur. 

Continuous Distributions 
The mathematical definition of a continuous probability function, f(x), is a function that satisfies the 
following properties. 
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1. The probability that x is between two points a and b is 

2. It is non-negative for all real x. 
3. The integral of the probability function is one, that is 

What does this actually mean? Since continuous probability functions are defined for an infinite 
number of points over a continuous interval, the probability at a single point is always zero. 
Probabilities are measured over intervals, not single points. That is, the area under the curve between 
two distinct points defines the probability for that interval. This means that the height of the 
probability function can in fact be greater than one. The property that the integral must equal one is 
equivalent to the property for discrete distributions that the sum of all the probabilities must equal one. 

Probability Mass Functions Versus Probability Density Functions 
Discrete probability functions are referred to as probability mass functions and continuous probability 
functions are referred to as probability density functions. The term probability functions covers both 
discrete and continuous distributions. When we are referring to probability functions in generic terms, 
we may use the term probability density functions to mean both discrete and continuous probability 
functions.

+2. Related Distributions
Probability distributions are typically defined in terms of the probability density function. However, 
there are a number of probability functions used in applications. 

Probability Density Function 
For a continuous function, the probability density function (pdf) is the probability that the variate has 
the value x. Since for continuous distributions the probability at a single point is zero, this is often 
expressed in terms of an integral between two points. 

For a discrete distribution, the pdf is the probability that the variate takes the value x. 

The following is the plot of the normal probability density function. 

Cumulative Distribution Function 
The cumulative distribution function (cdf) is the probability that the variable takes a value less than or 
equal to x. That is 

For a continuous distribution, this can be expressed mathematically as 



For a discrete distribution, the cdf can be expressed as 

The following is the plot of the normal cumulative distribution function. 

The horizontal axis is the allowable domain for the given probability function. Since the vertical axis is 
a probability, it must fall between zero and one. It increases from zero to one as we go from left to 
right on the horizontal axis. 

Percent Point Function 
The percent point function (ppf) is the inverse of the cumulative distribution function. For this reason, 
the percent point function is also commonly referred to as the inverse distribution function. That is, for 
a distribution function we calculate the probability that the variable is less than or equal to x for a 
given x. For the percent point function, we start with the probability and compute the corresponding x 
for the cumulative distribution. Mathematically, this can be expressed as 

or alternatively 

The following is the plot of the normal percent point function. 

Since the horizontal axis is a probability, it goes from zero to one. The vertical axis goes from the 
smallest to the largest value of the cumulative distribution function. 



Hazard Function 
The hazard function is the ratio of the probability density function to the survival function, S(x). 

The following is the plot of the normal distribution hazard function. 

Hazard plots are most commonly used in reliability applications. Note that Johnson, Kotz, and 
Balakrishnan refer to this as the conditional failure density function rather than the hazard function. 

Cumulative Hazard Function 
The cumulative hazard function is the integral of the hazard function. It can be interpreted as the 
probability of failure at time x given survival until time x. 

This can alternatively be expressed as 

The following is the plot of the normal cumulative hazard function. 

Cumulative hazard plots are most commonly used in reliability applications. Note that Johnson, Kotz, 
and Balakrishnan refer to this as the hazard function rather than the cumulative hazard function. 
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Survival Function 
Survival functions are most often used in reliability and related fields. The survival function is the 
probability that the variate takes a value greater than x. 

The following is the plot of the normal distribution survival function. 

For a survival function, the y value on the graph starts at 1 and monotonically decreases to zero. The 
survival function should be compared to the cumulative distribution function. 

Inverse Survival Function 
Just as the percent point function is the inverse of the cumulative distribution function, the survival 
function also has an inverse function. The inverse survival function can be defined in terms of the 
percent point function. 

The following is the plot of the normal distribution inverse survival function. 

As with the percent point function, the horizontal axis is a probability. Therefore the horizontal axis 
goes from 0 to 1 regardless of the particular distribution. The appearance is similar to the percent point 
function. However, instead of going from the smallest to the largest value on the vertical axis, it goes 
from the largest to the smallest value. 


	Analiza datelor experimentale
	Exemplu NIST=> Thermal Expansion of Copper Case Study
	Surse
	Adăugate fiindcă merită atenţie (sunt doar în engleză!)
	1.3.3.1. Autocorrelation Plot
	Autocorrelation Plot: Random Data
	Moderate Autocorrelation
	Strong Autocorrelation and Autoregressive Model
	Autocorrelation Plot: Sinusoidal Model

	1.3.3.15. Lag Plot
	1.=Lag Plot: Random Data
	2.=Lag Plot: Moderate Autocorrelation
	3.=Lag Plot: Strong Autocorrelation and Autoregressive Model
	4.=Lag Plot: Sinusoidal Models and Outliers

	1.3.6. Probability Distributions
	1. What is a Probability Distribution
	+2. Related Distributions



